exam questions

Exam 642-885 All Questions

View all questions & answers for the 642-885 exam

Exam 642-885 topic 1 question 53 discussion

Actual exam question from Cisco's 642-885
Question #: 53
Topic #: 1
[All 642-885 Questions]

Refer to the exhibit.


Which statement correctly explains the bgp graceful-restart command?

  • A. This command is used to enable NSR and is entered on the NSR-capable router, and also on any NSR-aware peer
  • B. This command is used to enable NSF and is entered on the NSF-capable router, and also on any NSF-aware peer
  • C. This command is only required on the NSF-capable routers to enable BGP graceful restart with the BGP peers
  • D. This command is only required on the NSF-aware routers to enable BGP graceful restart with the BGP peers
  • E. This command is only required on the NSR-capable routers to enable BGP graceful restart with the BGP peers
Show Suggested Answer Hide Answer
Suggested Answer: B 🗳️
Graceful restart is supported in recent versions of Cisco IOS software (12.0S) and is supported in Cisco IOS XR software. Graceful restart is the mechanism by which BGP routing peers avoid changes to their forwarding paths following a switchover. If the BGP peer has received this capability, it is aware that the device sending the message is nonstop forwarding (NSF)-capable. Both the NSF-capable router and its BGP peers (NSFaware peers) need to exchange the graceful restart capability in their OPEN messages, at the time of session establishment. If both peers do not exchange the graceful restart capability, the session will not be graceful restart-capable.
If the BGP session is lost during a Route Processor (RP) switchover or BGP process restart, the NSF-aware BGP peer marks all the routes associated with the
NSF-capable router as stale; however, it continues to use these routes to make forwarding decisions for a set period of time. This functionality means that no packets are lost while the newly active RP is waiting for convergence of the routing information with its BGP peers.
After a failover event occurs, the NSF-capable router reestablishes the session with the BGP peer. In establishing the new session, it sends a new graceful restart message that identifies the NSF-capable router as having restarted. At this point, the routing information is exchanged between the two BGP peers. Once this exchange is complete, the NSF-capable device uses the newly received routing information to update the RIB and the Forwarding Information Base (FIB) with the new forwarding information. The NSF-aware device uses the network information to remove stale routes from its BGP table. The BGP protocol is then fully converged.
If a BGP peer does not support the graceful restart capability, it will ignore the graceful restart capability in an OPEN message but will establish a BGP session with the NSF-capable device. This functionality will allow interoperability with non-NSF-aware BGP peers (and without NSF functionality), but the BGP session with non- NSF-aware BGP peers will not be graceful restart-capable.

Comments

Chosen Answer:
This is a voting comment (?). It is better to Upvote an existing comment if you don't have anything to add.
Switch to a voting comment New
Currently there are no comments in this discussion, be the first to comment!
Community vote distribution
A (35%)
C (25%)
B (20%)
Other
Most Voted
A voting comment increases the vote count for the chosen answer by one.

Upvoting a comment with a selected answer will also increase the vote count towards that answer by one. So if you see a comment that you already agree with, you can upvote it instead of posting a new comment.

SaveCancel
Loading ...